Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474459

RESUMO

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Assuntos
Artrópodes , Óleos Voláteis , Piper nigrum , Piper , Sesquiterpenos , Animais , Óleos Voláteis/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Piper/química , Óleos de Plantas/química
2.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985605

RESUMO

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Assuntos
Annonaceae , Guatteria , Óleos Voláteis , Xylopia , Annonaceae/química , Xylopia/química , Guatteria/química , Óleos Voláteis/química , Brasil , Simulação de Acoplamento Molecular , Folhas de Planta/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-36636605

RESUMO

Globba sessiliflora Sims is an aromatic rhizomatous herb of family Zingiberaceae which is endemic to Peninsular India. This study first reports the phytochemical profile and pesticidal potential of oleoresins obtained from the aerial and rhizome parts of Globba sessiliflora Sims. The oleoresins were prepared by the cold percolation method and were analyzed by a gas chromatography-mass spectrometry (GC-MS) method. Both the oleoresins varied greatly in composition, the major compounds identified in aerial part oleoresin (GSAO) were methyl linoleate, methyl palmitate, and phytol, while the major compounds present in rhizome part oleoresin (GSRO) were γ-sitosterol, 8 (17),12-labdadiene-15, 16-dial, methyl linoleate, and methyl palmitate. In order to evaluate the biological activities, the oleoresins were tested under laboratory conditions for nematicidal action and inhibition of egg hatching potential against root knot nematode, where GSRO was more effective. Insecticidal activity was performed against mustard aphid, Lipaphis erysimi and castor hairy caterpillar, Selepa celtis. In case of mustard aphid, GSRO (LC50 = 154.8 ppm) was more effective than GSAO (LC50 = 263.0 ppm), while GSAO (LC50 = 346.7.0 ppm) was more effective against castor hairy caterpillar than GSRO (LC50 = 398.1 ppm). The herbicidal activity was performed in the receptor species Raphanus raphanistrum subsp. sativus, and the oleoresins showed different intensities for seed germination inhibition and coleoptile and radical length inhibition. Molecular docking studies were conducted to screen the in vitro activities and through molecular docking, it was found that the major oleoresins components were able to interact with the binding pocket of HPPD and AChE with γ-sitosterol showing the best binding affinity.

4.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290633

RESUMO

A comparative study of volatiles, antioxidant activity, phytotoxic activity, as well as in silico molecular docking and ADMET study, was conducted for essential oils from three Vitex species, viz., V. agnus-castus, V. negundo, and V. trifolia. Essential oils (OEs) extracted by hydrodistillation were subjected to compositional analysis using GC-MS. A total number of 37, 45, and 43 components were identified in V. agnus-castus, V. negundo, and V. trifolia, respectively. The antioxidant activity of EOs, assessed using different radical-scavenging (DPPH, H2O2 and NO), reducing power, and metal chelating assays, were found to be significant as compared with those of the standards. The phytotoxic potential of the EOs was performed in the receptor species Raphanusraphanistrum (wild radish) and the EOs showed different levels of intensity of seed germination inhibition and root and shoot length inhibition. The molecular docking study was conducted to screen the antioxidant and phytotoxic activity of the major and potent compounds against human protein target, peroxiredoxin 5, and 4-hydroxyphenylpyruvate dioxygenase protein (HPPD). Results showed good binding affinities and attributed the strongest inhibitory activity to 13-epi-manoyl oxide for both the target proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA